Package: bigSurvSGD 1.0.0

bigSurvSGD: Big Survival Analysis Using Stochastic Gradient Descent

Fits Cox Model via stochastic gradient descent (SGD). This implementation avoids computational instability of the standard Cox Model when dealing large datasets. Furthermore, it scales up with large datasets that do not fit the memory. It also handles large sparse datasets using Proximal stochastic gradient descent algorithm.

Authors:Aliasghar Tarkhan [aut, cre], Noah Simon [aut]

bigSurvSGD_1.0.0.tar.gz
bigSurvSGD_1.0.0.zip(r-4.5)bigSurvSGD_1.0.0.zip(r-4.4)bigSurvSGD_1.0.0.zip(r-4.3)
bigSurvSGD_1.0.0.tgz(r-4.4-x86_64)bigSurvSGD_1.0.0.tgz(r-4.4-arm64)bigSurvSGD_1.0.0.tgz(r-4.3-x86_64)bigSurvSGD_1.0.0.tgz(r-4.3-arm64)
bigSurvSGD_1.0.0.tar.gz(r-4.5-noble)bigSurvSGD_1.0.0.tar.gz(r-4.4-noble)
bigSurvSGD_1.0.0.tgz(r-4.4-emscripten)bigSurvSGD_1.0.0.tgz(r-4.3-emscripten)
bigSurvSGD.pdf |bigSurvSGD.html
bigSurvSGD/json (API)

# Install 'bigSurvSGD' in R:
install.packages('bigSurvSGD', repos = c('https://atarkhan.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/atarkhan/bigsurvsgd/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

2.85 score 7 stars 1 scripts 186 downloads 6 exports 12 dependencies

Last updated 4 years agofrom:8dc4e4aa4b. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-win-x86_64NOTENov 06 2024
R-4.5-linux-x86_64NOTENov 06 2024
R-4.4-win-x86_64NOTENov 06 2024
R-4.4-mac-x86_64NOTENov 06 2024
R-4.4-mac-aarch64NOTENov 06 2024
R-4.3-win-x86_64NOTENov 06 2024
R-4.3-mac-x86_64NOTENov 06 2024
R-4.3-mac-aarch64NOTENov 06 2024

Exports:bigSurvSGDlambdaMaxConeChunkConeObsPlugingCplot.bigSurvSGDprint.bigSurvSGD

Dependencies:BHbigmemorybigmemory.sricodetoolsdoParallelforeachiteratorslatticeMatrixRcppsurvivaluuid